Reconstructing the Three-Dimensional GABAergic Microcircuit of the Striatum
نویسندگان
چکیده
A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100µm of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are inter-connected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study.
منابع مشابه
Supporting Information for: Reconstructing the three dimensional GABAergic microcircuit of the striatum
The Burke algorithm has two probability functions based on the diameter θ of the current dendritic segment: the probability of terminating the current branch p(T |θ); and the probability of branching p(B|θ), which is obtained by evaluating two subsidiary distributions and using the minimum value: p(B|θ) = min{p1(B|θ), p2(B|θ)}. The form of the algorithm we use for constructing a single dendriti...
متن کاملDopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit
The striatum, the principal input structure of the basal ganglia, is crucial to both motor control and learning. It receives convergent input from all over the neocortex, hippocampal formation, amygdala and thalamus, and is the primary recipient of dopamine in the brain. Within the striatum is a GABAergic microcircuit that acts upon these inputs, formed by the dominant medium-spiny projection n...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملRecurrent inhibitory network among striatal cholinergic interneurons.
The striatum plays a central role in sensorimotor learning and action selection. Tonically active cholinergic interneurons in the striatum give rise to dense axonal arborizations and significantly shape striatal output. However, it is not clear how the activity of these neurons is regulated within the striatal microcircuitry. In this study, using rat brain slices, we find that stimulation of in...
متن کاملMicrocircuits in the Striatum Striatal Cell Types and Their Interaction
The neostriatum is strategically located in the forebrain and receives inputs from all cortical areas. The complexity of the corticostriatal pathways suggest that striatal neurons are in a unique position to process convergent inputs from cortex and through basal ganglia output nuclei control subcortical nuclei and/or contribute to cortical dynamics via the thalamus. The most abundant neuron in...
متن کامل